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The finite-size shift of the critical temperature is calculated by the example of the 
spherical model, with short- and long-range interactions, confined to the general 
geometry L'l-a'x ~d' subject to periodic boundary conditions. The derived 
formula unifies in some sense all results found up to now. 
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1. I N T R O D U C T I O N  

Thermodynamic  functions exhibit singularities at a point of second-order 
phase transition in the thermodynamic limit only, i.e., when the number of 
the particles N and the volume V of the system are infinite. However, if 
some sizes of the system are finite, the thermodynamic properties of the 
system are altered (for details see ref. 1 and references therein). 

According to finite-size scaling theory, a phase transition occurring in 
a system at the thermodynamic limit persists if the dimension d' of infinite 
sizes is greater than the lower critical dimension d< of the system. In this 
case the value of the critical temperature T,.(oo) at which some thermo- 
dynamic functions exhibit a singularity is shifted to T, . (La-~rx  c~r; 
d ' > d < ) ,  the critical temperature for a system confined to the general 
geometry L a - a ' x  ~,t ' ;  when the system is infinite in d '  dimensions and 
finite in d - d '  dimensions. In the other case, i.e., when the number of 
infinite dimensions is less than the lower critical dimension, there is no 
phase transition in the system and the singularities of the thermodynamic 
functions are rounded and shifted. The critical temperature T, .(~)  in this 
case is shifted to a pseudocritical temperature T , . (La -a ' x  ~a ' ;  d '  < d < ) ,  
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corresponding to the center of the rounding of the singularities of the 
thermodynamic functions, holding in the thermodynamic limit. 

The aim of the present note is to evaluate the distance over which the 
critical temperature 7",.(co) of the bulk system is shifted in a finite system, 
by the example of the spherical model with interaction decaying at large 
distances i" as r - d - " ,  where tr is a parameter determining the range of the 
interactions: (i) 0 < a < 2 for long-range interaction and (ii) a/> 2 for short- 
range interaction. We suppose that the finite system is confined to the 
geometry L d - ' r x  oo d' and that the boundary conditions are periodic. 

The problem of the evaluation of the shift of the critical temperature 
for the bulk system and related finite-size effects has been investigated by 
several authors/2 7~ For the spherical model various techniques have been 
used to evaluate the shift: (i) When there is no phase transition in the 
system a formula for the finite-size shift (for the fully finite system with 
short-range interaction in particular for a = 2) has been derived by Shapiro 
and Rudnick ~4~ using an approach based on numerical approximations, (ii) 
for the same case but in a system with long-range and short-range interac- 
tion (0 < a ~ 2 )  the shift has been found by Brankov and Tonchev, tS~ and 
(iii) for the case when the system exhibits a phase transition the finite-size 
shift has been calculated by Br6zin ~3~ (for d ' = d - 1 )  and Allen and 
Pathria ~6~ (for d< < d ' < d > ,  where d> is the upper critical dimension). 
These results consider that the interaction in the system is of short range. 
Brankov and Danchev ~7~ derived the following formula for a system with 
long-range interaction and d< = cr < d'  < d> = 2~: 

1 1 

T , . ( L d - d ' x ~ d ' ; d ' > d < )  T , . ( ~ )  

1 F ( d / 2  - t~/2) ~ ,  d + 

p ~ ( 4n ) ~1/2 F ( a / 2  ) Ii,I - d'~ 

(1.1) 

where l ( d - d ' )  means that the summation is over I t  Z d-d ' ,  and the prime 
denotes that the term with / = 0  is excluded. For the meaning of the 
parameter p~ see below. 

Formula (l.1) generalizes the above results of Br6zin and of Allen and 
Pathria. 

In this note we find a formula which unifies all the results obtained for 
the finite-size shift for the spherical model. 

2. G E N E R A L  F O R M U L A  

For the sake of completeness in this section we will introduce some 
concepts and notations which will be useful later. The Hamiltonian of the 
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model is defined on a d-dimensional lattice La = LI x L_, x .. .  x Ld subject 
to periodic boundary conditions. The Fourier transform of the effective 
potential 

#-(q)= Y' ~-.~(l)exp(-il.q) (2.1) 
I e ,L/" 

has the following long-wavelength asymptotic behavior (p~ > 0): 

J ( q )  ,~ J ( O ) (  1 - po. Iql'~), I q l ~ O  

The mean spherical constraint has the form 

(2.2) 

L -- t 
1 = r#'a,~(~b) = ~  ( 5 +  Iql ~) - '  (2.3) 

q 

where the parameters are t =  T/p ,  and 5 =  q~/p, (qb = 2 s / z / f -  1 is a linear 
function of the spherical field s). 

When the spherical model is confined to the general geometry 
L a-  a' x ova', the asymptotic behavior of the sum in the right-hand side of 
the spherical constraint (2.3) takes the form 191 

 rL,,.olS) =  ,.ol5) + 6r  (2.4) 

f ~  
-.. daq(5 + Iql*) - '  (2.5) 

- / t  

where 

'#a.,,(fb) = (2tO-,/ J 

is the bulk contribution and 

LV-" S '  If ~ f ~ . . , . ~ ( 5 )  - (4rO.~/_. ,id-~/', ' 

(2.6) 

(2.7) 

dx exp ( _  1/12'~ 
4x / 

X X '7/2 - , 1 / 2 - I E a / 2 , a / 2  ( __ x~/ZL,~5) 

is the finite-si2e correction. In Eq. (2.6) the function 

E~,p(z) = F(oJc+fl) 
k = 0  

is the so called Mittag-Leffler function. 

822/83/5-6-27 



1214 Chamati and Tonchev 

The asymptotic form of expression (2.4) in the large-L limit can be 
found using the method suggested in ref, 5. This method has been used to 
find the asymptotic form of the equation for the mean-spherical field for the 
fully finite system d ' =  0. A straightforward generalization of this method is 
possible for a system confined to the general geometry L d - d ' X  rod' .  After 
some algebra we obtain 

a'r = L " -  "( L ' ~  ) ' '# '-  ' D,,, ,. - ~b "/'~- ' O,,.. + C a.a, .( ~ ) 

L a - d  ;~d'/2 
+ - -  - -  g,c,r.~ (2.8) (2=) ~ F(a/2) 

where we introduce the notations 

Da,r  - (4rt)a/2 dx x r - d / 2  - IEa/2,a/2 (__X./2) (2.9) 

L ~-,I ~ '  'Io r~ dx x ~/2 -'r/2 - I exp( - x 111-~) 
Ca,.,..(~) = 2%(, ,_ a,2) , .I- ,rl  

x*:L% 
xIEr ( (2n)" / V(~/2)] (2.10) 

ga, a,.,~= ~ '  d x x  '~/a-a'/2-' e x p ( - x  [!12) 
B d - -  d '  } 

f[- - -  X ( d - d ' } f 2  dx X a / 2  - - d / 2  - -  1 

- lim { ~ F(a*/2, ,t.t =) Ill-'* 
2 ~ 0  I t d * )  

--f_~o - . . f  ~ dUlI ' (a ' /2 .212) l l l - "" )  (2.11) 

Here d * =  d - d ' ,  a * =  a - d ' ,  and F(ct, x) is the incomplete gamma func- 
tion. From (2.11) one can see that 8,i.a'., is a generalization of the 
Madelung-type constant. (5~ 

From Eqs. (2.3), (2.4), and (2.8), we write down the equation of the 
spherical field in the form 

1 
- - =  , D d ' . . - - t P  d.,7+ t # ' a ~ ( ~ ) + L ~ - a ( L ~ ) ' l ' / ~ - ' -  ~'z/*-lh C,/,,r.~(~) 

L . - a  #r/2 
+ -  - -  ga.,t'.~ (2~) ~ F(a/2) 

(2.12) 
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The next step consist in the evaluation of the finite-size shift of the 
critical temperature, generalizing the result of ref. 5. It is 

1 1 L ~ - a  n 'r/2 
- -  ~,ca',, (2.13) 

t,.(L d-a'  x OOd'; d'  # d <  ) t,.(oo) - (2g) ~ F(a/2)  

The notation Tc(Ld-d'X ood'; d' #d<)  in Eq. (2.13) is the finite-size 
pseudocritical temperature for d'  < a and the finite-size critical temperature 
for d'  > iT. Notice that for d' -- 0 we refined the formula derived in ref. 5. 

Because the bulk critical exponent v d measuring the divergence of the 
correlation length ~ of the d-dimensional system is equal to 1 / ( d - a )  for 
a < d < 2 a  and to 1/cr for d > 2 a ,  we see from Eq.(2.13) that the L 
dependence of the finite-size shift of the critical temperature is L -  ~/,,s in the 
former case and smaller than L-~/,,s in the latter. This is in agreement with 
the finite-size scaling prediction; see, e.g., the result for the short-range case 
(a = 2) due to Br6zin. ~3~ 

3. C O N C L U S I O N  

We will show that the two formulas (l.1) and (2.13) found for the 
finite-size shift of the critical temperature are equivalent for some d' and or. 

Using the notations m = d - d '  and v = ( d - a ) / 2  in the r.h.s, of 
Eq. (2.11 ), we refined the r.h.s, of Eq. (Al . l )  of ref. 10 for 2--0.  According 
to this equation, we have 

F(d/2-a/2) ~, i l l _ d +  ~ (3.1)  
~d'd"a~ 7~d/2--d'/2-a Ild-d'} 

and from Eqs. (2.13) and (3.1) we recover the formula (1.1). The proof of 
the identity (3.1) is, however, limited to the case when v > m/2. In our nota- 
tions this corresponds to the case when d' > a. 

The sum in the r.h.s, of Eq. (3.1) can be expressed in terms of the 
Epstein zeta function t~l 

0 0 ( d - d ' , d - a ) =  ~' 1 
t,l-,r~ Ill s - ~  (3.2) 

which can be regarded as the generalized (d -d ' ) -d imens iona l  analog of 
the Riemann zeta function ( ( d / 2 -  a/2). In the case under consideration the 
Epstein zeta function has only a simple pole at d' = d< and may be analyti- 
cally continued for 0 ~<d'< d<.  For  some particular values of the finite 
dimensions of the lattice this sum may be expressed as a product of simple 
sums such as Dirichlet series. This is done for d * =  1, 2, 4, 6, and 8 in 
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Table I. 
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Shift of the Critical Temperature for Typical 
Values of the Space Dimensionality 

Ot L d - a  

d = 2  d = 3  

d'  o"=1/2 a = l  a = l  a = 2  

0 -0.766643 -0.620746 -0.800387 -0.225785 
I 0.397469 ~c 6  T ~  -0.310373 

2 0 0 0.166667 ~c6  

3 - -  - -  0 0 

ref. 10. The more interesting 3D case has been investigated numerically by 
Glasser and ZuckerJ Lt~ 

The behavior of 6t L a-~ as a function of a and some numerical results 
in the most interesting cases are presented in Table I and Figs. 1--4. 

The result for d = 3, d '  = 0, and a = 2 was obtained in ref. 5. One can 
see that the shifted critical temperature T,.(Ld-a'x Oed'; d' > d < )  is lower 
than the critical bulk critical temperature 7",.(or) for the different values of 
d, d ' ,  and a (which is the "normal case"; see ref. 3), while the pseudocritical 
Tc(Ld-d'x oU'; d ' < d < )  is greater than the bulk critical temperature. 
However, for the boundary case when d'--* d< we find that the shift is 
infinite. This may be explained with the aid of the behavior of the Epstein 
zeta function at its pole d '  =or. t ~  The shift in this case is 6 t ~ ( d ' - a ) - ~  
and the appearance of -T-co is clear. 

Fig. 1. The shift of the critical temperature as a function of t7 for d =  2 and d'  = 0. 
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Fig. 2. 
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